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ABSTRACT
Part production requires constant monitoring to assure the

effective manufacturing of high-quality components. The choice
of monitoring methods can become a crucial factor in the deci-
sions made during and prior to manufacturing. In an ideal world,
designers and manufacturers will work together to interpret man-
ufacturing and part data to assure the elimination of faults in
manufacturing. However, manufacturing still lacks mathemat-
ically robust means of interpreting the manufacturing data so
that a channel of communication can be established between de-
sign and manufacturing. To address part production concerns,
we present a systematic methodology to interpret manufacturing
data based on signals from manufacturing (e.g., tool vibrations,
part surface deviations). These signals are assumed to contain
a fingerprint of the manufacturing condition. The method pre-
sented in this paper is based on a mathematical transform to
decompose the signals into their significant modes and monitor
their changes over time. The methodology is meant to help de-
signers and manufacturers make informed decisions about a ma-
chine and/or part condition. An example from a milling process
is used to illustrate the method’s details.

BACKGROUND AND MOTIVATION
In this paper, we present a method to detect faults and mon-

itor changes during manufacturing. The method extends a math-
ematical transform, namely, the Karhunen-Lo`eve transform, to

provide a mathematical decomposition of manufacturing signals
into their fundamental components. These components are mon-
itored to detect significant stationary and nonstationary changes
in the manufacturing fingerprint. The methodology is presented
for use by both designers and manufacturers with the purpose
of providing an accurate and clear picture of the manufacturing
condition. In the following, we begin with an example in man-
ufacturing, then present the steps of a fault detection and moni-
toring methodology, including a set of guidelines to interpret the
results. We then apply the methodology steps and guidelines to
an example in manufacturing, namely, the surface condition of
parts from a milling process.

Engineering Surfaces and Their Analysis
The motivation for this work stems from a crucial need in

part production to assess the condition of a part and control de-
viations from the specified design. An important question when
manufacturing a component is how to enable the workpiece to
work according to the designer’s specifications and goals. The
designer has a specific function in mind and the manufacturer has
to make sure that the part is produced to satisfy this functional-
ity (Whitehouse, 1994). By gaining an understanding of process
variation, the design and manufacturing engineers can work as
a team to assess the process capability and determine whether a
part will function properly (Zemel and Otto, 1996).

To assess the functionality of a workpiece, it is crucial to
identify possible deviations and control them. As a first step, it
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is crucial that we measure and characterize these deviations. Di-
mensional measurement satisfies part of this need: by measuring
the length, area, position, radius, etc., we assure that the work-
piece conforms to the designer’s specifications. This step, in turn,
ensures that the component will assemble into an engine, gear-
box, etc. However, the measurement of the dimensional char-
acteristics of the component is not sufficient to ensure that the
workpiece will satisfy its function. To complement the dimen-
sional measurement, surface measurement is used to assure that
all aspects of the surface geometry are known and controlled. In
other words, if the shape and texture of the component are cor-
rect, then it will be able to move at the speeds, loads, and tem-
peratures specified by the designer. As a result, the measurement
of the surface characteristics of the component hence becomes a
crucial factor in assuring its quality (Whitehouse, 1994).

These surface characteristics are typically lumped together
in the form of surface texture measurement, which includes the
roughness, waviness, and form errors on the component. Rough-
ness refers to irregularities on component surfaces, such as tool
marks left on the surface as a result of a milling process, or the
marks left on the surface by a grinding process. Waviness refers
to irregularities of longer wavelength typically caused by an im-
proper manufacturing condition, such as vibration between the
workpiece and the cutting tool. Very long waves are the form
errors caused by errors in workpiece table motion, errors in ro-
tating members of the machine, or thermal distortion.

The surface texture of a manufactured component provides a
“fingerprint” of the machine, process, and part condition (White-
house, 1994). The factors which result in one of these three
types of errors are often different. As a result, it becomes cru-
cial to accurately decompose the different components of the
surface and attempt to understand their nature and potential for
damage to the part’s quality (Sottile and Holloway, 1994). In
particular, it is important to enable the monitoring of the fac-
tors which result in these deviations and determine their severity
and originating source so that they can be controlled or elimi-
nated. Traditionally, Statistical Process Control (SPC) is used
to measure the process during production, and correlated to a
model to understand the sources of variation (Zemel and Otto,
1996). SPC often uses average measures, such as surface rough-
ness and waviness measures, which often fail to provide accu-
rate information about the nature of the surface errors (White-
house, 1994; Rohrbaugh, 1993). To overcome this shortcoming,
random process analysis tools from the signal processing field
are often adapted to the field of surface characterization (Ben-
dat and Piersol, 1986; Whitehouse, 1994; Braun, 1986; Serridge,
1991; Spiewak, 1991). More advanced methods in the research
community involve mathematical transforms, such as the wavelet
transforms and higher-order spectral transforms (Berry, 1991;
Jones, 1994; Rohrbaugh, 1993; Geng and Qu, 1994; Fackrell
et al., 1994). The shortcomings of these techniques are provided
in (Tumer et al., 1995; Tumer et al., 1997a).

Current Focus
In our work, we have proposed the use of an alternative

transform, namely, the Karhunen-Lo`eve transform, for the pur-
pose of condition monitoring in manufacturing (Tumer et al.,
1997a; Tumer et al., 1997c; Tumer et al., 1997b). Specifi-
cally, we have demonstrated that a fault detection and monitoring
method in manufacturing, based on the Karhunen-Lo`eve trans-
form, provides an accurate decomposition of the fault patterns
in manufacturing signals, and a means to monitor any significant
changes over time.

In this paper, we present the details of this method in the
form of steps of a methodology and a set of guidelines for inter-
pretation. The guidelines are based on extensions to the afore-
mentioned method, assuring that the results are clear and easily
interpretable for manufacturers and designers. The details of the
extensions are not presented in this paper. Instead, the set of
guidelines provided contain these extensions in a summarized
form. Specifically, the KL-transform-based method is extended
for use in manufacturing and design, by assuring that the out-
puts provide an accurate and physically-meaningful interpreta-
tion of manufacturing signals. Our goal is to provide designers
and manufacturers with a common means of exchanging accu-
rate information about the manufacturing condition and making
informed decisions about the status of the manufacturing pro-
cess, machine, and part (Eppinger et al., 1995; Zemel and Otto,
1996). A thorough systematic approach in detecting and moni-
toring faults on manufactured component surfaces, with the pur-
pose of integrating design and manufacturing tasks, does not ex-
ist. We believe that the set of specific steps and guidelines based
on our method provides an accurate representation of the part
surface condition. We also believe that the physical understand-
ing of the fault condition for manufactured parts will help bridge
the gap between designers and manufacturers, as well as reduce
scrap during manufacturing and reduce the time and money spent
to produce a part.

KL-Based Detection and Monitoring
To analyze and monitor manufacturing signals, the

Karhunen-Loève (KL) transform decomposes the signals into
completely decorrelated components in the form of empirical ba-
sis functions that contain the variations in the original data. An
estimate of the original signal is computed using a linear com-
bination of these empirical basis functions and their respective
coefficients in the new transform domain. To obtain a KL de-
composition of a collection of signals, zero-mean input data are
assembled in a covariance matrix, from which the eigenvectors
and eigenvalues corresponding to the principal axes of highest
variability are computed. These axes correspond to the funda-
mental modes in the input data, and their corresponding coef-
ficient vectors are used to monitor stationary and nonstationary
changes in the fundamental modes. The mathematical details
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of the method are presented in previous publications by the au-
thors (Tumer et al., 1997a; Tumer et al., 1997b; Tumer et al.,
1997c), and are hence not repeated here.

The KL transform has been used in many signal process-
ing applications in literature, ranging from the characterization
of pictures of human faces (Sirovich and Keefe, 1987), to the
analysis of turbulent flow mechanics (Ball et al., 1991). The lit-
erature background is described in further detail in (Tumer et al.,
1997c; Tumer et al., 1997b; Tumer et al., 1997a). In this work,
the transform is applied to signals measured from manufactur-
ing processes, to analyze and quantify the fingerprint indicative
of potential errors on part surfaces. The application of the KL
transform to manufacturing is rare, limited to multivariate sta-
tistical process control (Martin et al., 1996; Zhang et al., 1995),
mainly due to the difficulty in obtaining physically-significant
outputs. Improvements proposed as a set of guidelines in this
paper assure that we will obtain physically-meaningful outputs.

Signals and Modes from Manufacturing

Signals contain many characteristics which can be catego-
rized either as deterministic or stochastic. An example of a deter-
ministic signal is a periodic waveform (Bendat and Piersol, 1986;
Braun, 1986). As opposed to deterministic signals, which can
be predicted by known models, stochastic signals require proba-
bilistic statements to describe their structure. Most signals con-
tain a combination of stochastic and deterministic signals, and
exhibit either stationary or nonstationary characteristics. Nonsta-
tionary characteristics are indicative of a time-varying structure
in the data, where the statistical properties vary with time. Non-
stationary signals, which can be regarded as deterministic factors
operating on otherwise stationary random processes (Bendat and
Piersol, 1986; Box et al., 1994), are difficult to predict, and often
cause difficulties in the detection of otherwise predictable modes.

In this work, we focus on signal types that are encountered
typically in manufacturing processes. Most manufacturing pro-
cesses generate periodic waveforms that are indicative of many
potential error sources. Examples are the tool marks from a turn-
ing process, feed marks from a milling process, or roller chatter
marks from a Selective Laser Sintering process (Tumer et al.,
1998; Tumer et al., 1997b). Stationary or nonstationary changes
in these periodic waveforms can be indicative of potential or al-
ready existing faults in the machine or material. Furthermore,
the appearance of additional periodic components (e.g., harmon-
ics) can be indicative of inherent errors in the manufacturing ma-
chine. In addition, component surfaces may contain linear trends
such as slopes and offset changes due to impulsive forces during
machining (e.g., surface hardness variations, chip breakage, and
tool wear). As a result, in this work, we focus on periodic and
linear trends, and their stationary and nonstationary changes in
the presence of high-variability stochastic noise.

Depth of Cut

Spindle

Workpiece

Feed

Tool Holder

Cutting
Tool

rpm

Figure 1. The Face Milling Process.

CASE STUDY: APPLICATION IN MANUFACTURING
Before presenting the steps of our method, let us introduce a

case study involving the quality of parts from a milling process.
We will use surface profiles measured from such parts to apply
the steps of our methodology later on.

The Milling Process
Milling is one of the most versatile cutting processes, used

to manufacture parts with nonrotational symmetry (Schey, 1987).
To illustrate the use of our method in manufacturing, we use parts
manufactured using a vertical milling machine. Vertical mills
have an axis of the cutter perpendicular to the workpiece surface.
In particular, in face milling, the cutting tooth is attached to the
cutter face which is perpendicular to the axis, as shown in Fig-
ure 1.

Part Surfaces from a Milling Process
We collect surface profile measurements from a part man-

ufactured using the face milling process shown in Figure 1. A
flat feature, made of Aluminum 2024, has been milled using a
vertical milling machine. The cutting tool material is high speed
steel. No cutting fluid has been used. Surface measurements
have been collected for analysis, as shown in Figure 3. The cut-
ting speed iss= 0:508m=sec(100 f pm); the feed isf = 2:54
10�4 m=rev (0:010 in=rev); the depth of cut isd = 2:54 10�4 m
(0:01 in) (Srinivasan et al., 1996; Srinivasan and Wood, 1997).

There can be multiple sources of variation on surfaces of
parts manufactured by milling. Examples are misalignment of
the workpiece due to clamping, nonstationary hardness varia-
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tions, tool wear, machine and tool vibrations, etc. These mech-
anisms can leave undesirable patterns on part surfaces. In par-
ticular, the vertical milling process produces a dominant periodic
pattern on part surfaces, due to the feed marks produced during
cutting. In addition, nonstationary linear trends appear on the
surfaces due to misalignments of the work table, as well as other
nonstationarities due to time-varying wear of cutting tool, or sud-
den chip breakage, etc. Such nonstationarities make it difficult to
detect the exact nature of the main periodic component. For ex-
ample, linear trends often appear as a dominant low-frequency
periodic component using Fourier-based methods, which makes
the automatic detection of the relevant component difficult. In
addition, the nature of the nonstationarities is impossible to de-
termine with Fourier-based methods. As a result, to get more
reliable surface information, we analyze such surfaces using our
Karhunen-Loève-based condition monitoring method, described
next.

KL-BASED CONDITION MONITORING METHOD
The methodology has five main stages, as shown in Figure 2.

The first stage is problem identification, second, data preparation,
third, data decomposition, fourth, output interpretation, and fifth
verification and prediction. The first, fourth, and fifth stages are
shared by manufacturers and designers, while the middle stages,
two and three, are performed by manufacturers only. The de-
signer’s involvement at the first phase is crucial in assessing the
potential problems that might affect the part’s designed function-
ality. A discussion of potential problems with the manufacturer
is a crucial requirement in concurrent engineering (Zemel and
Otto, 1996). The exchange of information about the part and
machine condition at phases four and five is also an essential el-
ement in analyzing the existing and potential problems with the
purpose of understanding the nature and source of process devi-
ations. Note that phase four contains the summarized extensions
to the KL-based detection and monitoring technique. The set of
guidelines provided as part of this step in the methodology are
essential in assuring the correct interpretation of the KL results,
and hence the method’s acceptance in manufacturing practice.

In the following subsections, these five stages are further
decomposed into several steps to present the methodology in a
systematic and logical manner. The details of the steps are first
presented and then followed by an example application in the
manufacturing of milled parts. Note thatM input signals of di-
mensionN are collected, whereZ j is the zero-mean version of
the input data,X j ; Ŝ is the sample covariance matrix using the
zero-mean data;Φ is the KL eigenvector matrix, with eigenvalue
matrix Λ; Y is the matrix containing the coefficient vectors for
the eigenvectors. Also note that the steps outlined below are to
be implemented using an algorithm in order to automate the KL
analysis and decision-making process.

Step One: Problem Identification
The first stage for manufacturers and designers is to identify

the problem to be analyzed. This obvious step is crucial in iden-
tifying which manufacturing signal will best represent the condi-
tion of the manufacturing process. For example, we focus here on
surface profile measurements of manufactured parts as contain-
ing a fingerprint of the machine condition. Another possibility
is the monitoring of vibrational signals from rotating machinery
in the manufacturing machine. The choice of the manufacturing
signal can be made by the designers and/or the manufacturers, ei-
ther based on the manufacturer’s experience about which output
is most likely to show faults, a particular component that the de-
signer is testing, or various different manufacturing signals can
be monitored at the same time to eliminate the need for past ex-
perience or biased results.

Step Two: Data Preparation
As with every data analysis methodology, an important step

is to prepare the data for analysis. Before starting the KL analy-
sis, manufacturers must follow the following steps:

1. CollectM measurementsZ j of the signal ofN points each,
using a set time interval∆t:

(a) Check Nyquist (sampling frequency at least twice
the highest frequency of interest (Bendat and Piersol,
1986));

(b) Decide about decimation (spectral energy concentrated
at the lower frequencies);

(c) Determine requiredN (one wavelength of the lowest
frequency sine (Fukunaga, 1990));

(d) Determine requiredM (large M to assure high signal-
to-noise ratio, smallM to assure computational effi-
ciency) (Bendat and Piersol, 1986; Fukunaga, 1990));

2. Convert output data to reflect time or length as the x-axis
scale, instead of sampled points;

3. Compute ensemble mean and remove from each input vec-
tor: X j = Z j �

1
M ∑M

j=1Z j .

Step Three: KL Decomposition of Data
Once the data is prepared for analysis, the manufacturer can

decompose the data into the KL outputs. To decompose the data,
the following steps must be applied:

1. Form covariance matrix using theM zero-mean input vec-
tors: Ŝ= 1

M ∑M
j=1X jXT

j = 1
M XTX;

2. Compute eigenvectors and eigenvalues of the covariance
matrix: ŜΦ = ΦΛ;

(a) If M < N, then computeM�M covariance matrix and
retransform the eigenvectors:

i. covariance matrix:XT
M�NXN�M;
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5. Plot Eigenvectors-Coefficient Vectors
4. Tabulate Eigenvalues
3. Compute Coefficient Vectors
2. Compute Eigenvectors & Eigenvalues
1. Compute Covariance Matrix

5. Remove Ensemble Mean
4. Check Decimation
3. Check Nyquist
2. Collect Measurements

1. Identify Potential Concerns
2. Select Mfg. Signal(s)

5. Identify Remaining Modes
4. Isolate and Monitor Stochastic Modes
3. Monitor Stationary and Nonstationary Changes
2. Detect Polynomial Modes
1. Detect Transcendental Modes

2. Compare Reconstruction to Original
3. Decide on Number of KL Modes
4. Add/Subtract Modes for Prediction

Manufacturer

Manufacturer

Manufacturer

Designer

Designer

Manufacturer

Manufacturer

Designer

1. Recontruct Estimated Signals

TWO: Data Preparation

FOUR: Output Analysis & Interpretation

THREE: Data Decomposition

FIVE: Verification & Prediction

1. Choose N, M

ONE: Problem Identification

Figure 2. The Steps of the KL-Based Fault Detection and Monitoring Methodology.

ii. eigenvector equation: 1
M (XTX)M�MΦM�M =

ΦM�MΛM�M;
iii. retransformation:ΦN�M = XN�MΦM�M ;

(b) If N < M, then compute theN�N covariance matrix
and its eigenvectors:

i. covariance matrix:XN�MXT
M�N;

ii. eigenvector equation: 1
M (XXT)N�NΦN�N =

ΦN�NΛN�N;

3. Compute coefficient vectors (Y = ΦTX);
4. Tabulate eigenvalues in descending order;
5. Plot eigenvector and coefficient vector pairs (comparable

scales) for the first dominantm eigenvalues that add up to
99% of the total energy.

Step Four: Interpretation of KL Outputs
The most crucial part of the methodology is the correct in-

terpretation of the analysis results. Designers and manufacturers
can consult the following set of guidelines to help with the in-
terpretation of the results. Manufacturers can use these results to
make on-line changes to improve the quality of the manufactur-

ing signal. Designers can make off-line changes about the man-
ufacturing process or the design parameters, and make redesign
decisions based on the interpretation and prediction of results.

General Results The eigenvectors provide the average
fundamental modes in the inputs; the coefficient vectors provide
the change in the fundamental modes over time; and the eigen-
values provide the significance of each mode. In the follow-
ing, the interpretation of essential modes of relevance on man-
ufactured surfaces is presented (e.g., transcendental and polyno-
mial modes). The stationary and nonstationary changes in these
modes will be monitored by means of the coefficient vectors.
General multicomponent signals are addressed next to complete
the methodology.

Interpretation of Sinusoidal Modes Sinusoidal
modes of the formxk(t) = ∑K

k=1Aksin(ωkt + θ(k)) are very
common in manufacturing. (Ak is the amplitude,ωk is the
frequency, andθ(k) is the phase angle of the sinusoidal wave-
form). For example, rotating elements, such as bearings,
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rollers, and grinding wheels, introduce a fundamental frequency
component (Wowk, 1991). In addition, cutting tools introduce
periodic components such as feed marks during the turning and
milling processes. Vibrations of the rotating machinery may also
introduce harmonics (i.e., integer multiples) of the fundamental
frequency components. Additional frequency components or
changes in the magnitudes of the existing frequency components
are introduced in cases of bearing faults, tool wear, etc. The
following guidelines must be followed to interpret sinusoidal
modes:

1. Each sinusoidal mode in input data results in a pair of eigen-
vectors:

(a) Observation of a pair of eigenvectors for a sinusoid is
indicative of phase differences in input data.

(b) The two eigenvectors reflect a similar functional form
(amplitude and frequency), but are shifted by 90 de-
grees, due to the orthogonality requirement of the
eigenvectors: it is sufficient to observe only one of the
eigenvectors in the pair in order to obtain frequency
and amplitude information.

(c) Similarly, stationary and nonstationary changes in the
sinusoidal modes can be monitored using only one of
the coefficient vectors in the pair.

(d) Phase information can be obtained and monitored by
reconstructing a linear combination of the pair of
eigenvectors and corresponding coefficients.

(e) Real phase information can be determined by resam-
pling the original data to capture one full period of the
sinusoidal waveform and running the decomposition
algorithm again: if there still is an additional eigen-
vector, then there exists real phase information; this
information can be captured by following the same re-
construction procedure as above.

2. Decomposition of multicomponent sinusoidal modes re-
sults in eigenvectors with each individual frequency com-
ponents:

(a) If sinusoids have different magnitudes (e.g.,A1 >>
A2 >> � � � >> Ak), then there will be one dominant
sinusoidal mode per eigenvector.

(b) If sinusoids have similar magnitudes (e.g.,A1 � A2 �

�� � �Ak), then the eigenvectors will have combinations
of multiple sinusoids:

i. If the eigenvectors indicate a combination of sev-
eral modes, then increase the number of inputs to
reduce the variance of the eigenvector estimates.
The cutoff for an acceptable decomposition must
be determined based on the physical problem. The
maximum number of inputsM is determined by
increasing the numberM and observing the cut-
off in the KL eigenvectors. The adequacy ofM

can be verified by computing the variance of the
eigenvalue estimators to make sure an asymptotic
value is reached.

3. Stationary and nonstationary changes in the amplitude of the
sinusoidal components will be indicated by the correspond-
ing coefficient vectors.

Interpretation of Linear Modes Linear modesxk(t) =
At+B in manufacturing are introduced due to several factors: (1)
linear trends with a non-zero slope are often introduced due to
misalignments in the workpiece or clamping mechanisms; and,
(2) linear offset changes may occur during manufacturing due
to tool tip breakage, impulsive blow to the machine, etc. The
linear changes constitute nonstationary changes that are difficult
to detect with averaging methods. The following guidelines must
be followed to interpret linear modes:

1. Plot the eigenvectors: linear modes appear “linear” com-
pared to the rest of the eigenvectors.

2. Nonstationary changes in the linear modes are observed by
means of the corresponding coefficient vectors:

(a) Linear trends manifest as a nonstationary increase in
the slope of the coefficient vector over time;

(b) Linear offsets manifest as a nonstationary jump in the
coefficient vector over time;

(c) Impulsive changes manifest as an impulse in the coef-
ficient vectors corresponding to the linear eigenvector.

Interpretation of Stochastic Modes Stochastic
modes are an essential part of signals from manufacturing
and can happen for various reasons. For example, an additive
noise component may be introduced due to stochastic vibra-
tions, noise from outside disturbances, measurement errors:
x(t) = y(t) + n(t), whereE[n(t)] = 0 andVar[n(t)] = σ2

0. In
addition, a manufacturing signal may be stochastic by nature:
for example, grinding introduces a stochastic profile on man-
ufactured surfaces due to the random cutting tool structure on
the grinding wheel, or, the fracture mechanisms during cutting
result in a fractal structure in the measured signals (Srinivasan
and Wood, 1997).

Additive stochastic modes in the input signals are collected
in the low-eigenvalue eigenvectors; as a result, once the co-
herent modes are removed, only the stochastic modes remain.
The stochastic structure can be analyzed using random measures,
such as fractal measures, which are shown to describe inherent
“structure” in stochastic data, once the deterministic modes have
been removed (Srinivasan et al., 1996; Tumer et al., 1997a). In
this paper, the fractal dimension is adapted to show feasibility.

To detect changes in the stochastic nature of the data, the
following guidelines can be followed:
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1. The stochastic mode can be obtained by forming a linear
combination of the coherent KL modes and subtracting them
from the input vectors.

2. The remaining stochastic-only inputs can be analyzed by
means of fractal measures (or other stochastic measures):

(a) Compute the fractal dimension of each input;
(b) Observe changes in the fractal dimension to determine

changes in the stochastic structure over time.

Other Modes The above modes represent the frequently-
encountered modes in manufacturing. To allow the decom-
position of general functions, the same procedure is followed.
Specifically, a linear combination of various arbitrary functions,
a1 f1(x; t)+a2 f2(x; t) will result in the isolation of each function
f1(x; t) and f2(x; t) in the form of eigenvectors, which can then
be monitored by means of the corresponding coefficient vectors.
Any functional form can be extracted in the form of KL eigenvec-
tors. However, the analyst has to refer to some library of possible
functions to determine the function of the KL eigenvectors. An
example of an arbitrary function, not addressed in this work, is
a transient, which is a nonstationary change in the data. In addi-
tion, a nonlinear combinationf1(x; t) f2(x; t) results in eigenvec-
tors that contain this product form, instead of decomposing the
functions further. Examples of such nonlinear functions include
polynomials and exponentially-decaying sinusoids.

This work only addresses specific types of nonstationary
changes. Specifically, nonstationary changes in the amplitude of
sinusoidal modes, classified as a change in the mean-square value
(variance), are identified, as well as nonstationary changes in lin-
ear trends, classified as a change in the mean value (i.e., slopes,
offsets, impulses). More complex forms of these nonstationari-
ties are not yet addressed. Specifically, nonstationary changes in
the frequency structure, such as a frequency-modulated signal,
can be identified by the introduction of various eigenvectors for
the changing frequency value. The change in the frequency struc-
ture can be detected by plotting the coefficient vectors for each
frequency component. This will indicate a “zero” significance
of the second frequency component introduced due to frequency
modulation, prior to the modulation.

Step Five: Verification and Prediction of Modes
Finally, the analysis results must be validated by comparing

the effect of the detected modes (i.e., eigenvectors) on the input
signals. To perform this comparison, an estimate of the input
signals can be reconstructed using a linear combination of the
fundamental eigenvectors and coefficient vectors and adding this
to the ensemble averaged vector. Such a reconstruction can be
used to determine and study the effect of specific components on
surface quality as well. Specifically, designers can makea pri-
ori design changes, estimate the surface profiles based on the dy-

namic or static modes introduced due to these changes, and hence
determine their potential effect on surface quality. For example,
changing a bearing will introduce a fundamental frequency com-
ponent with known amplitude. Estimates of the expected surface
patterns based on this redesign change can be reconstructed and
compared to the actual surface profiles with the worn bearing, to
determine the improvement on surface quality. Finally, specific
surface patterns can be compared to the expected (estimated) sur-
face patterns to provide an additional warning mechanism, to
complement the condition monitoring of KL eigenvectors and
coefficient vectors.

KL-BASED MONITORING OF MILLED PARTS
In this section, we return to the components produced from

the vertical milling process introduced in Figure 1, and apply the
steps of our methodology to analyze their surface structure.

Step One: Problem Identification
Recall that the first step of the methodology requires the se-

lection of a manufacturing signal. In this case, we select the sur-
face profile measurements as the output signal of interest. Sur-
face profiles contain a fingerprint of the manufacturing condition
and often can pinpoint incipient faults in the manufacturing ma-
chine (Whitehouse, 1994). In addition, the quality of the man-
ufactured product surfaces is one of the essential factors when
manufacturing functional parts which will get assembled with
other parts.

Step Two: Data Preparation
The second stage of the methodology requires the collec-

tion and preparation of data for analysis.M = 60 input pro-
file measurements are collected, withN = 1000 points each, as
shown in Figure 3. These input profiles are sampled at a rate
of 799 points=mm, over a surface traverse length ofTL = 1:25
mmalong the longitudinal. The different measurements are col-
lected in the direction perpendicular to the longitudinal in order
to detect possible nonstationary trends in the transverse direc-
tion, as shown in Figure 4. Notice that by measuring short se-
quences along the longitudinal direction, we assure the detection
of periodic patterns. The nonstationary trends in the transverse
direction are detected as well, if there is a significant change.
To detect nonstationary patterns along the longitudinal direction,
the direction of the measurements needs to be reversed. A very
long measurement of the longitudinal direction can be collected
and then divided into smaller sequences to represent snapshots.
The changes in the longitudinal direction can then be detected
by means of the coefficient vectors along the data sequences.
Longer measurements will require the data to be decimated down
to a reasonable number of sampled points.
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Following the steps of the methodology, the ensemble mean
profile is removed from each input measurement, resulting in
M = 60 zero-mean input sequences.

Step Three: Decomposition of Milled Surface Data
The zero-mean data are assembled in a data matrix and en-

tered into the KL algorithm. The results of the KL analysis of
the milled surface measurements are then prepared for further
analysis and interpretation, presented next.

Since we haveM = 60 inputs (rankr �M = 60 (Tumer et al.,
1997c; Tumer et al., 1997b)), the KL analysis results in 60 eigen-
values and eigenvectors. Among those, only a few are significant,
representing the fundamental modes in the data. The eigenvalues
resulting from the KL analysis are presented in Table 1 (only
M = 20 are shown). The first five eigenvalues represent signifi-
cant modes, as discussed next.

Step Four: Analysis and Interpretation of Results
This crucial analysis stage of the methodology requires a

careful interpretation of the KL decomposition outputs by man-
ufacturers and/or designers.

Fundamental Eigenvectors and Coefficient Vectors
The Karhunen-Lo`eve transform of the collected milling pro-

file measurements results in five fundamental eigenvectors, with
the main three modes shown in Figure 5, which correspond to
a linear trend, a low-frequency sinusoidal pattern, and a high-
frequency sinusoidal pattern (twice the frequency of the first one)
(note that the “pairs” for the sinusoids are not shown). The cor-
responding coefficient vectors are shown in Figure 6.
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Figure 6. KL Coefficients for Milled Profiles.

The first mode (first eigenvector), shown in Figure 5, cor-
responds to the linear slope which exists on the milled surface,
indicated by a linear eigenvector. The eigenvector, which is com-
pared to the two sinusoidal eigenvectors, has the general form of
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Table 1. Eigenvalues for Milling Analysis.

Eigenvalue Number Eigenvalue Individual Energy Cumulative Energy

λ1 1.243794 0.9811 0.9811
λ2 0.009579 0.0076 0.9886
λ3 0.008497 0.0067 0.9953
λ4 0.001446 0.0011 0.9965
λ5 0.001280 0.0010 0.9975
λ6 0.000867 0.0007 0.9982
λ7 0.000540 0.0004 0.9986
λ8 0.000399 0.0003 0.9989
λ9 0.000221 0.0002 0.9991
λ10 0.000184 0.0001 0.9992
λ11 0.000174 0.0001 0.9994
λ12 0.000121 0.0001 0.9995
λ13 0.000090 0.0001 0.9995
λ14 0.000085 0.0001 0.9996
λ15 0.000067 0.0001 0.9996
λ16 0.000056 0.0000 0.9997
λ17 0.000040 0.0000 0.9997
λ18 0.000038 0.0000 0.9997
λ19 0.000033 0.0000 0.9998
λ20 0.000028 0.0000 0.9998

a linear vector. Such a trend is caused by misalignments of the
worktable, which is identified as a source of error in this case.
The corresponding coefficient vector, shown in Figure 6a, indi-
cates the change in slope and severity of this fundamental pat-
tern along the transverse direction (see Figure 4). The nature of
this nonstationary pattern can be characterized by monitoring the
eigenvector and coefficient vector pair.

The second mode (second and third eigenvectors), shown
in Figure 5, corresponds to the main periodic pattern generated
on milled surfaces due to the feed marks during milling. A fre-
quency component atf1 = 3:19 cycles=mm is clearly identified
with the periodic eigenvector, without the adverse effects of non-
stationary trends. Any changes in this component, or the rel-
ative severity of its magnitude, can be monitored and detected
by means of the corresponding coefficient vector, shown in Fig-
ure 6b. The sinusoidal eigenvector, in this case, is accompanied
by a second eigenvector to represent the phase information in
the data (not shown). The third eigenvector is equivalent to the
second eigenvector in frequency and amplitude; this eigenvector
is indicative of the phase shift in the collected snapshots. This
phase effect is due to the fact that the surface is sampled at ran-
dom locations, hence introducing a random phase component to
the data (Tumer et al., 1997c).

The third mode (fourth and fifth eigenvectors), shown in Fig-
ure 5, corresponds to the second frequency component on the sur-
faces. This additional frequency component atf2 = 2 f1 = 6:39
cycles=mm, corresponds to the harmonic of the main frequency
component due to the feed marks, and is generated due to vibra-
tions of the cutting tool during the spindle rotation. Once again, a

second eigenvector accompanies this frequency component, due
to the phase component (not shown). Changes in the magnitude
of this frequency component can be monitored by means of the
corresponding coefficient vector, shown in Figure 6c.

Phase Information To compute the phase information
between the inputs due to each sinusoidal component, a linear
combination of the pair of eigenvectors and coefficient vectors
corresponding to the sinusoidal component of interest. Recall
that the eigenvectors (#2 and #3 in this case) are always 90 de-
grees to each other, therefore not providing any information on
the phase difference between the inputs.

Figure 7 shows the linear combination of eigenvectors and
coefficient vectors #2 and #3 to reconstruct the first two surface
measurements. Note that these linear combinations are different
than the original surface measurements since they only contain
the information corresponding to the main frequency component
of the signal. Also note that thex-axis has been converted to
the proper scale of “traverse length” instead of using the sam-
pled points. Finally, since the phase shift between two sinusoidal
functions is a function of the linear shift (along the x-axis) be-
tween the sinusoids and the frequency of the sinusoid:ωj∆xj= θ,
where∆x is the linear shift between the two sines in millimeters,
θ is the phase angle between the two sines in radians, and,ω is
the frequency of the sine in radians per millimeter (Tumer et al.,
1997c; Tumer et al., 1997b).

The linear shift between the two linear combinations shown
in Figure 7 is equal to∆x= 0:075mm. The discrete frequency of
the sinusoid in the second eigenvector is equal tol = 4 (computed

9 Copyright  1998 by ASME



-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0 0.2 0.4 0.6 0.8 1 1.2

Z
er

o-
M

ea
n 

H
ei

gh
t [

m
m

]

Total Length [mm]

Main Frequency Component: Phase Difference in Inputs

’new_lincomb_m.1’
’new_lincomb_m.2’

Figure 7. Phase Difference Between Milling Profiles, Linear Combina-

tion Using Main Frequency f1 Component Only.

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0 100 200 300 400 500 600 700 800 900 1000

H
ei

gh
t [

m
m

]

Sampled Points

Difference Profile for Input Data 10

’diff_m_rec_9pc.10’

Figure 8. Difference Milling Profile, Input #10.

from a simple power spectrum). Discrete frequency is converted
to real frequency usingf = l fs=Ntotal, where f is the actual fre-
quency in cycles per millimeter,fs is the sampling frequency in
points per millimeter, andNtotal is the total number of points per
input signal. The frequencyf is converted to a frequency value in
radians per millimeter usingω = 2π f . The sampling frequency
in this case isfs = 799:9 rad=mm, and the total number of points
is Ntotal = 1000 points. The resulting frequency corresponding
to a discrete frequency ofl = 4 is equal toω = 20:1 rad=mm.
The resulting phase angle between the first two input vectors due
to this sinusoidal component isθ = 1:5 radians.

Monitoring The Stochastic Component As dis-
cussed previously, the Karhunen-Lo`eve decomposition of a sig-
nal acts as a filter. This is because the first few eigenvectors
contain the coherent modes, leaving the noise components to the
low-frequency eigenvectors.

A difference profile is obtained to remove the coherent KL
modes from the profile measurements, as shown in Figure 8,
which is then used to compute the fractal dimension. The frac-
tal dimension for this profile can be computed using the method
described in (Tumer et al., 1997a). For this difference profile,
the regression coefficient isβ = 1:269, which implies a fractal
dimensionDf = 1:86, computed as(5�β)=2.

This fractal dimension can be computed for each input mea-
surement to monitor the change in the fractal dimension over the
part surface. The plot of the fractal dimensions can be used to
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Figure 9. KL Reconstruction of Milled Profiles Using 5 Eigenvectors.

detect any changes in the stochastic structure not detected by
the KL eigenvectors and coefficient vectors. An example of a
stochastic change is the sudden breakage of the teeth of a grind-
ing wheel during a finishing process, or wear in the teeth of a
grinding wheel, causing minute nonstationary changes in the re-
sulting part’s surface profile. Such sudden changes can be detri-
mental to the quality of the final product.

Step Five: Analysis Verification and A-Priori Prediction
The fifth step in the methodology provides manufacturers

and designers with a tool to verify the analysis results and a po-
tential to make further predictions on the quality of the manufac-
turing signals based on design changes. To verify the accuracy of
the resulting eigenvectors and coefficient vectors, it is important
to reconstruct an estimate of the original input profiles and com-
pare them to the original profiles. Figure 9 shows a comparison
of the profile estimates using the five fundamental eigenvectors
and the original profiles (two profile examples are shown). No-
tice that the stochastic component is filtered out of the fundamen-
tal eigenvectors. As a result, the reconstructed estimates have a
much less noisy shape. The general shape of the profiles is cap-
tured accurately using the first five eigenvectors. As a result, the
KL decomposition is deemed satisfactory. This comparison will
provide manufacturers and designers with a means of deciding
on the accuracy of the KL analysis results.

The reconstruction of estimates of surface profile measure-
ments can be used to help designers in another way as well.
Specifically, the reconstruction profiles can be used as a means
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to predict what a surface profile will look like, given specified
modes to the system. This scenario can happen in the case of
a change in one of the machine components by the designer,
for example. The designer will have a model of the mode this
change will generate. This additional mode can be modeled as
a potential eigenvector, and superimposed on the reconstruction
estimates to study the effect on the surface profiles. Such a tool
can become a valuable aid in makinga-priori design decisions
about the manufacturing machine.

CONCLUSIONS FOR MANUFACTURING AND DESIGN
The systematic steps described above are necessary to pro-

vide a thorough analysis of the manufacturing signals and un-
derstand their nature. The analysis and interpretation of the data
based on the Karhunen-Lo`eve (KL) transform provides crucial
insights about the manufacturing condition and is a very useful
tool in assuring the production of high-quality parts. In this pa-
per, we use extensions to the KL-based method and present them
in the form of a set of guidelines. Using these guidelines, we
present a fault detection and monitoring methodology based on
an accurate representation of manufacturing data using funda-
mental KL eigenvectors and coefficient vectors. We then apply
the steps of our methodology to an example in milling.

By providing an accurate and mathematical means of inter-
preting and communicating the manufacturing data, the fault de-
tection and monitoring method opens the door for an effective
integration of the manufacturing and design fields. However, in
order to completely bridge the fields of manufacturing and de-
sign, it is necessary to provide a means of accurately diagnose
the origin of the faults. The diagnosis step is not addressed in
this work and is being investigated by the authors. A schematic
of a possible design and manufacturing methodology bridging
the gap between the two fields is illustrated in Figure 10. In this
scenario, vibration from the manufacturing machine and surface
profiles from manufactured parts are measured in parallel and
compared to each other following a KL analysis of the surface
measurements. The comparison and classification of the decom-
posed KL modes and measurements from the manufacturing ma-
chine will lead to the diagnosis of fault origins which result in
the degradation of part surface quality. Such results will then
help designers and manufacturers in making informed changes
to improve the quality of the parts, such as redesign of faulty ma-
chine components, modification of product specifications, and
readjustment of process parameters.
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